高中教师数学工作计划

时间:2024-08-12 23:32:37
高中教师数学工作计划七篇

高中教师数学工作计划七篇

时间流逝得如此之快,我们的工作同时也在不断更新迭代中,是时候认真思考计划该如何写了。计划怎么写才能发挥它最大的作用呢?以下是小编精心整理的高中教师数学工作计划7篇,仅供参考,欢迎大家阅读。

高中教师数学工作计划 篇1

一、指导思想

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材解读

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教学方法

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、情况分析

1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、具体措施

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

高中教师数学工作计划 篇2

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书61数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习欲望。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言, ……此处隐藏4075个字……略易一些。新课程标准实施后,为了有利于促进新课程目标的落实,命题题型、考试内容等略有变动如下:

2、试卷结构及题型

与往年数学高考试卷有所改变,由原来的总共22道题,其中选择题10道(每题5分);填空题6道(每题4分);解答题6道(共76分),改为20道题,其中选择题8道(每题5分);填空题6道(每题5分);解答题6道(共80分)。

3、考试内容

(1) 数学基础知识(新增了一些数学内容与删改了部分传统内容)

(2) 数学思想方法(基本保持不变)

(3) 数学能力(主要变化是“应用意识”和“创新意识”的地位问题)

4、关于样卷

充分重视对新增内容的考查,重视对基础知识和主干知识的考查,重视对应用意识和创新意识的考查。

四、考查内容与要求的具体变化

1. 函数

主要变化有:

① 加强了函数模型的背景和应用的要求,如要求了解指数函数模型和对数函数模型的实际背景,了解指数函数、对数函数以及幂函数的增长特征、含义及其广泛应用;

② 加强了函数与方程、不等式、算法等内容的联系,如要求了解函数的零点与方程根的联系,能根据具体函数的图像,用二分法求相应方程的近似解。

③提升了对数形结合、几何直观等数学思想方法的考查要求,如要求理解函数的单调性、最大(小)值及其几何意义,会运用函数图象理解和研究函数的性质;

④增加了幂函数的概念和几个简单幂函数的图象的变化情况等知识; ⑤提出了“了解简单的分段函数,并能简单应用的要求;

⑥降低了对反函数的考查要求,只要求了解指数函数与对数函数y=logax互为反函数( >O,且 1),不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数.

2.导数

理科中的主要变化有:

①降低了对复合函数的求导要求,对复合函数仅限于求形如 的导数; ②明确了利用导数研究函数的单调性、求函数的极值、最值时,其中的多项式函数一般不超过三次;

③增加了定积分与微积分基本定理的内容.

文科中的主要变化则是将“掌握函数y=C(C为常数)和y=xn(n∈N+)的导数公式”扩充为掌握“常见基本初等函数的导数公式:(C)′=0(C为常数);( )′=nx ,n∈N+;

(sinx)′=cosx;(cosx)′= 一sinx;(e )′= e ;

(ax)′=axlna(a>0,且a≠1);(log ax) ′=logae (a>0且a≠1)”

3.不等式

理科中的主要变化有:

①增加了柯西不等式、排序不等式、贝努利不等式,并要求会用它们证明一些简单问题;

②对不等式的证明方法,除原来的比较法、综合法、分析法外,增加了反证法和放缩法;

③降低了解不等式的要求,只要求会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图,会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x–a|+|x–b|≥c.

文科中的主要变化是删除了“不等式的证明”及“理解不等式|a|–|b|≤|a+b|≤|a|+|b|”的考试要求,降低了解不等式的要求,只要求会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

4.概率

理科中的主要变化是增加了随机数与几何概型、超几何分布以及条件概率的内容,要求了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率的概念,并能解决一些简单的实际问题.

文科中的主要变化有:

①删除了相互独立事件同时发生的概率、独立重复试验的内容;

②降低了概率计算的要求,仅要求会用列举法计算一些随机事件所含的基本事件数及事件发生的概率;

③增加了随机数与几何概型的内容,要求了解随机数的意义,能运用模拟方法估计概率,了解几何概型的意义.

5.统计

主要变化有:

①加强了对统计思想与运用统计思想解决实际问题的要求;

②增加了频率折线图、茎叶图、用样本的基本数字特征估计总体的基本数字特征以及利用散点图认识变量间的相关关系等内容;

③要求了解独立性检验(只要求2×2列联表)、回归分析的基本思想、方法及其简单应用.

6.排列、组合与二项式定理

理科数学对这部分内容的考查要求基本没有变化,文科数学则删除了这部分内容.

7.立体几何

8.解析几何

9.向量

10.三角函数

五、具体复习措施

研究高考信息,关注考试动向。及时了解20xx高考动态,适时调整复习方案。

1.努力提高学生的运算能力

无论是《教学大纲》,还是《考试说明》都把它列在诸项数学能力的首位,应放手让学生自己动手算算,不能自己包办。

2.努力提高学生的数学素养

充分重视新教材教学内容改革,拓展教学空间,培养学生良好的数感,积极创设新情境,激发学生学习兴趣。在新课程标准下,教师授课不能再用老的模式“一言堂”,只是给学生灌输知识,把学生看成是被动的接收容器。教师的数学教学不仅仅是单纯的知识传授, 而应育人于教书中, 树立“教师是主导,学生是主体”的思想,使数学教育成为真正意义上的素质教育, 成为数学化的教育。

在教学活动中,教师只能是一个组织者、引导者、评价者,而不是传统的“一包到底”的教师形象。所以,教师在教学时,应采用灵活多变的教学方法创设情景,着力营造一种轻松愉快的学习氛围,从而培养学生的学习兴趣和热情,用妙趣横生的数学问题吸引学生去思考、去探索、去创造。如,在讲解不等式时,可设计如下实际应用题:某商场在节前进行商品降价酬宾销售,二种方案: A方案第一次打折销售,第二次打折销售;B方案买几赠多少销售,问哪一种方案降价较多?学生通过审题分析讨论,可归结为比较与大小的问题。

在课堂教学中,创设这样生活问题情境,让学生从心理上接受数学,喜欢数学,进而产生浓厚兴趣。这个教学环节对培养学生的自主探究数学问题和创新思维,无疑是非常有价值的。

3.努力提高学生的阅读能力和审题能力

要克服学生解应用题有为难的情绪,只要看到应用题就有不想做,或思维活跃不起来了,萌生放弃念头,只有在平常适度训练训练,多阅读,加强审题的能力。

4.努力提高学生答题的规范性

数学是门很严密,很有逻辑性的一门学科,使我们务必答题要规范,百密而无一疏。

5.教会学生应试的常识与复习的方法

加强应试心理专题讲座,复习解决选择题,填空题,计算题,以及一些常用的方法与技巧,分别展开专题训练,使学生能切实感受到这些方法的作用。

《高中教师数学工作计划七篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式